

QA-DKRZ documentation

Contents:

	QA-DKRZ - Quality Assurance Tool for Climate Data
	Getting Started

	Documentation

	Getting Help
	Mailing list

	Bug tracker

	Contributing

	License

	Frequently Asked Questions
	Questions
	Q: Why does ...?

	Glossary

	Change History
	0.5

	0.4

User-guide

	User Guide
	Overview

	Installation

	Work-flow

	Configuration

	Best Practice

	Results

	CF Conventions Checker

Indices and tables

	Index

	Module Index

	Search Page

QA-DKRZ - Quality Assurance Tool for Climate Data

[image: build-status] [https://travis-ci.org/IS-ENES-Data/QA-DKRZ] [image: conda-install] [https://anaconda.org/birdhouse/qa-dkrz]

	Version:	0.5.x

The Quality Assurance tool QA-DKRZ developed at DKRZ checks conformance
of meta-data of climate simulations given in NetCDF format with conventions
and rules of projects. At present, checking of CF Conventions, CORDEX, CMIP5, and
CMIP6, the latter with the option to run PrePARE.py (D. Nadeau, LLNL,
https://cmor.llnl.gov) is supported. The check results are summarised in json-formatted files.

Note

The QA tool is still in a testing stage.

Getting Started

The recommendated way to install QA-DKRZ is to use the conda package manager.

$ conda create -n qa-dkrz -c conda-forge -c h-dh qa-dkrz

If a machine is not suited for Linux-64Bits or you would like to work
with the sources, then see Installation
for details.

The success of the installation may be checked either by running

$ qa-dkrz --example

(creating a directory example
in the current path. More details in Results)
or by operating the stand-alone-checker with a NetCDF file of your choice.

$ dkrz-cf-checker your-choice.nc

Documentation

QA-DKRZ is using Sphinx, and the latest documentation can be found on
ReadTheDocs [http://qa-dkrz.readthedocs.org].

Getting Help

Please, direct questions or comments to hollweg@dkrz.de

Mailing list

Join the mailing list ...

Bug tracker

If you have any suggestions, bug reports or annoyances please report them
to our issue tracker at https://github.com/IS-ENES-Data/QA-DKRZ/issues

Contributing

The sources of QA-DKRZ are available on Github:
https://github.com/IS-ENES-Data/QA-DKRZ

You are highly encouraged to participate in the development.

License

Please notice the Disclaimer of Warranty (DoW.txt) file in the top distribution
directory.

Frequently Asked Questions

Questions

Q: Why does ...?

Answer: Just because ...

Glossary

	Quality Assurance

	Quality assurance (QA) is a way of preventing mistakes ... (Wikipedia).

Change History

0.5

	release-date:	TBA

	packaged as conda.

	travis continous integration added.

	published docs as sphinx on ReadTheDocs.

0.4

	release-date:	2014-mm-dd

	CORDEX checker added ...

User Guide

	Release:	0.5

	Date:	Jul 18, 2017

	Overview
	What is checked?

	Available Versions

	Installation
	By Conda Package Manager

	From GitHUB repository

	Work-flow

	Configuration
	Partitioning of Data Sets

	Best Practice
	Installation

	Before a Run

	Operational Mode

	Results

	CF Conventions Checker
	CF Test Suite

Overview

What is checked?

The Quality Assurance (QA) tool developed at DKRZ tests the compliance
of meta-data of climate simulations given in NetCDF format to conventions and
rules of projects. Additionally, the QA checks time sequences
and the technical state of data (i.e. occurrences of Inf or NaN, gaps,
replicated sub-sets, etc.) for atomic data set entities, i.e. variable and
frequency, e.g. tas and mon
for monthly means of near-surface air temperature`. When atomic data sets
are subdivided into several files, then changes between these files in
terms of (auxiliary) coordinate variables will be detected as well as gaps or
overlapping time ranges. This may also apply to follow-up experiments.

At present, the QA checks data of the projects CMIP5, CMIP6 and CORDEX
by consulting tables based on requested controlled vocabulary and requirements.
When such pre-defined information is given about directory structures,
format of file names, variables and attributes, geographical domain, etc.,
then any deviation from compliance will be annotated in the QA results.

Files with meta-data similar to a project, but a few deviating features from the default
tables can also be checked. User-defined tables may disable particular checks
and supersede e.g. the default project name.

While former versions took for granted that meta-data of files were valid in
terms of the NetCDF Climate and Forecast (CF) Meta Data Conventions,
compliance is now verified. The CF check is both embedded in the
QA tool itself and provided by a stand-alone tool, which is described below.
Also available is a test suite used during the development phase.

There was a discussion during the 2016-ESGF_F2F_Conference (http://esgf.llnl.gov)
for CMIP6 that passing a DRS check and the CMOR3 checker
(http://cmor.llnl.gov/mydoc_cmip6_validator)
is sufficient to enter files in ESGF-CoG nodes.
The CMOR3 validator PrePARE.py is additionally run by the QA-DKRZ tool; the results are
merged into the flow of QA-DKRZ annotations.

After installation, QA-DKRZ runs are started on the command-line.

$ /package-path/scripts/qa-DKRZ [opts]

Note

The name of the tool has changed over the years as well as the name of
the starting script. At first, the acronym QC (Quality Control/Check)
was used, but was changed to the more commonly used term
QA (Quality Assurance). The former script names qcManager as well as
qc_DKRZ, and the underscore replaced by a hyphen work, too.
Also, option names containing QC or qc are still
valid for backward compatibility.

Available Versions

At present, the QA-DKRZ package is a rolling release
and is provided on GitHub

$ git clone https://github.com/IS-ENES-Data/QA-DKRZ

Installation

QA-DKRZ may be installed either via the conda package manager or from a GitHub repository.

Recommended is the conda package manager installing
a ready-to-use package. At present, a 64-bit processor is required.

If you want to work with sources or use a different machine architecture, then the
installation from source should be the first choice.

For CMIP6, QA-DKRZ binds the CMOR validator PrePARE.py (D. Nadeau, LLNL,
https://cmor.llnl.gov). This is conducted only by conda, e.g.

$ conda create -n cmor -c conda-forge -c pcmdi -c uvcdat cmor

Details in section Work-flow below.

No matter what the preference is conda or from GitHub,
you are asked for a location of tables and programs during the installation.

By Conda Package Manager

Make sure that you have
conda [http://conda.pydata.org/docs/install/quick.html#linux-miniconda-install] installed.
The quick steps to install miniconda on Linux 64-bit are:

$ wget https://repo.continuum.io/miniconda/Miniconda-latest-Linux-x86_64.sh
$ bash Miniconda-latest-Linux-x86_64.sh

Note

The installation is tested on various 64-bit machines.

Please check that the conda package manager is in your PATH.
For example you may set the PATH environment variable as following:

$ export PATH=$PATH:your-path/your-miniconda/bin
$ conda -h

conda provides the QA-DKRZ package with all dependencies included.
You may install it to the root environment or to any other with a name of your choice, e.g.

$ conda create -n qa-dkrz -c conda-forge -c h-dh qa-dkrz

From GitHUB repository

Requirements

The tool requires the BASH shell and a C/C++ compiler (works for AIX, too).

Building the QA tool

The sources are downloaded from GitHub by

$ git clone https://github.com/IS-ENES-Data/QA-DKRZ

Any installation is done with the script install (a prefix ‘./’ could
be helpful in some cases) within the QA-DKRZ root directory. Please, have also a look
at the Work-flow section.

	A file install_configure in QA-DKRZ binds
necessary lib and include directories. A template .install_configure
is provided. If not copied to install_configure and edited before the first launch,
then it is created and the user is asked to edit the file.

	Environmental variables CC, CXX, CFLAGS, and CXXFLAGS are accepted.

	install establishes access to libraries, which may be linked (recommended) or built
(triggered by option --build).

	Proceedings are logged in file install.log.

	The executables are compiled for projects named on the command-line.

	When install is started the first time for a given project, then corresponding
external tables and programs are downloaded to a QA_HOME directory;
the user is asked for the path.

	The user’s home directory contains a config.txt file in directory .qa-dkrz
created and updated by user defined control statements.

The full set of options is described by:

$./install --help

Building Libraries

If you decide to use your own set of libraries (accessing provided ones
is preferred by respective settings in the install_configure file), then
this is accomplished by

$./install --build [opts]

Sources of the following libraries are downloaded and installed:

	zlib-1.2.8 from www.zlib.net,

	hdf5-1.8.9 from www.hdfgroup.org,

	netcdf-4.3.0 from www.unidata.ucar.edu (shared, no FORTRAN, non-parallel),

	udunits package from http://www.unidata.ucar.edu/packages/udunits.

The libraries are built in sub-directory local/source.
If libraries had been built previously, then the sources are updated and
the libraries are rebuilt.

Work-flow

Please note that the work-flow has changed. By now, operational mode is
generally distinct from installation or updating.

Operation is conducted (with some reasonable options) by e.g.

$ qa-dkrz -f task-file

with task-file containing frequently or task-specific options like
PROJECT_DATA, QA_RESULTS, SELECT, EMAIL_SUMMARY, NUM_EXEC_THREADS,
CHECK_MODE and PROJECT or QA_CONF.
The full set of options used by default is given in file
QA_HOME/tables/projects/PROJECT/PROJECT_qa.conf
with QA_HOME chosen during the installation. Additionally, every valid option
may be provided on the command-line by prefixing -e.

Note that option RUN_CMOR3_LLNL must be given for running PrePARE.py.

Installation and update tasks are indicated by option --install=..., which
is additionally provided to the qa-dkrz call. Then, all options of install
have to be given by a comma-separated list; the usual -- prefix of options
may be omitted, e.g.

$ qa-dkrz --install=help

would display all install options.
The --install option may be merged with operational options conducted afterwards.

The separation of operation and install/updating is broken by option --auto-up for
backward-compatibility. Additionally, when working with the GitHub based package,
the --install option may be replaced by the QA-DKRZ/install command
(then options with -- prefix).
Note that conda does not know the path to install.

Operation/installation/update with conda requires activating and deactivating the
corresponding environment. Provided that conda is within the path or aliased:

$ source activate your-chosen-environment-name
$ qa-dkrz options
$ source deactivate.

Command which qa-dkrz while the environment is activated reveals the path to qa-dkrz.
Given to PATH or as alias would make activate/deactivate redundant.

There are three stages for updating:

	install [PROJECT] without any additional option.

	Compilation of executables for PROJECT. Only for GitHub based installation; no
effect for a conda installed qa-dkrz.

	install –up

	Updating once every other number of days, while num has been given by option --uf=num
or one day be default.

	install –force

	Unconditional update

Information is kept in a configuration file located in ~/.qa-dkrz/config.txt by default.
User may not edit it, but could. If missing, it is restored during the next qa-dkrz call.

A corrupt or incomplete installation becoming apparent during an operational run would issue
a message for resolving the conflict.

For those who want to have full access to the sources, but do not like to grapple with
library dependencies, a hybrid operation of conda and GitHub based sources QA_DKRZ is possible.
Just bind the conda installed libs to the file QA-DKRZ/install_configure and operate/update
from the GitHub based QA-DKRZ.

Configuration

The QA would run basically on the command-line only with the specification of
the target(s) to be checked. However, using options and gathering these
in conf-files facilitates checks.

Configuration options follow a specific syntax with option names.

KEY-WORD enable key-word; equivalent to key-word=t
KEY-WORD = value[,value ...] assign key-word a [comma-separated] value; overwrite
KEY-WORD += value[,value ...] same, but appended

Partitioning of Data Sets

The specification of a path to a data directory tree by option PROJECT_DATA
results in a check of every NetCDF files found within the entire tree.
This can be further customised by the key-words SELECT and LOCK,
which follow special rules.

KEY-WORD var1[,var2,...] specified variables for every path; += mode
KEY-WORD path1[,path2,...] [=] all variables within the specified path; +=mode
KEY-WORD path1[,path2,...] = [var1[,var2,...] specified variables within the given paths; += mode
KEY-WORD = path1[,path2,...] = [var1[,var2,...] same, but overwrite mode
KEY-WORD += path1[,path2,...] = [var1[,var2,...] append to a previous assignment

Some options act on other options:

	Option names on the command-line are case-insensitive they have to be prefixed
by ‘-e’ ‘-E’ (a blank or _ may follow).

	Highest precedence is for options on the command-line.

	If path has no leading ‘/’, then the search is relative to the path specified by option PROJECT_DATA.

	Special for options -S arg or an appended plain string on the command-line:
cancellation of previous SELECTions by any configuration file.

	If SELECTions are specified on the command-line (options -S) with an absolute
path, i.e. beginning with ‘/’, then PROJECT_DATA specified in any
config-file is cancelled.

	All SELECTions refer to atomic variables, i.e. all
sub-temporal files, even if a file name is appended to a path.

	LOCKing gets the higher precedence over SELECTion.

	Path and variable indicators are separated by the ‘=’ character, which may be
omitted when there is no variable (except the case that the path item
contains no ‘/’ character).

	Regular expressions may be applied to both path(s) and variable(s).

	A variable is selected if the beginning of the name is unambiguous,
e.g. specifying ‘tas’ would select all tas, tasmax, and tasmin files.
Note that every file name begins with variable_... for CMIP5/CORDEX, thus,
use tas_ for this alone.

	Former option names are valid, if they have changed in the meantime.

Configuration Files

A description of the configuration options is given in the repository.

QA-DKRZ:
/package-path/tables/projects/"project-name"/"project-name"_qa.conf

Configuration files and options may be specified multiply following a given
precedence. This facilitates having a file with short-term options (in a
file attached to the -f option on the command-line), another one with settings
to site-specific demands, which are robust against changes in the repository,
and long-term default settings from the repository. All options may be specified
on the command-line plus some more (
/package-path/QA-DKRZ/scripts/qa_DKRZ --help).
A sequence of configuration files is defined by QA_CONF=conf-file
assignments embedded in the configuration files.
The precedence of configuration files/options is given below from highest to
lowest:

	directly on the command-line

	in the task-file (-f file) specified on the command-line.

	QA_CONF assignments embedded (descending starts from the -f file).

	site-specific files provided by files located straight in
/package-path/tables.

	defaults for the entire project:

Experiment Names

QA-DKRZ checks files individually, the results are gathered in containers
unique for a specific scope. Albeit most projects have defined a term
‘experiment’, this is not suitable to provide a realm common to a sub-set
of data files. Note that having everything identical, but the model for instance,
could cause annotations, i.e. differences for some variables, in the QA results.

For CMIP5/6 and CORDEX, an unambiguous scope is defined by the properties of
the so-called Data Reference System (DRS), i.e. the components of the path to
the variables. The options LOG_PATH_INDEX and DRS_PATH_BASE
define a unique experiment-name, where the former contains a comma-separated list
of indices of the path components and the latter the starting component with
index=0, e.g. DRS_PATH_BASE=output and LOG_PATH_INDEX=1,2,3,4,6.
An example is commented in Results.

Similar is for building the name of a consistency table, which is used to check consistency
between a parent and a child experiment.

Note

If CT_PATH_INDEX is not set, then consistency checks are disabled.

Best Practice

Installation

	Quick and easy: conda create -n qa-dkrz -c conda-forge -c h-dh qa-dkrz

	Full sources: git clone https://github.com/IS-ENES-Data/QA-DKRZ
	Use access to locally provided libraries via the install_configure file

	CMIP6 with PrePARE.py: conda create -n cmor -c conda-forge -c pcmdi -c uvcdat cmor

	Verify the success of the installation by running qa-dkrz --example[=path],
see Results.

	Automatic updating is enabled by option --auto-up until --auto-up=d[isable] is provided;
works for both qa-dkrz and install.

Before a Run

	There is a default for almost every option in the project tables

	Gather frequently changed options in a file and provided on the command-line (-f);
this file could also contain QA_CONF=with-user-defined-name.

	Options on the command-line (but -f) only for testing or rechecking small data sets.

	Use the SELECT option to partition the entire data set, e.g. for CORDEX,
SELECT AFR-44= (note that in this case ‘=’ is required;
may-be with prefixed ‘.*/’ depending on PROJECT_DATA)
would check the data of every model available for the specified domain.
On the other hand, SELECT .*/historical=orog would find any orography
file in all historical in the given PROJECT_DATA=sub-dir-tree.

	Option CT_PATH_INDEX defines the name of
a consistency table, which is created and utilised to check consistency across
sub-atomic files and across parent experiments, if available,
of a given variable. This kind of table is consulted for
experiments and versions matching the same name.

	Similarly for logfile names by LOG_PATH_INDEX

Operational Mode

	Before starting to check data, please make sure that the configuration was set
as desired by qa-dkrz [opts] -e_show_conf.

	Check the selected experiments: qa_DKRZ [opts] -e_show_exp.

	Try for a single file first and inspect the log-file, i.e. run
qa-dkrz [opts] -e_next, then resume without -e_next.

	Use nohup for long-term execution in the background.

	If the script is run in the foreground, then command-line option ‘-m’ may
be helpful by showing the current file name and the number
of variables (done/selected) on a status line .

	Have a look at the QA results in directory
QA_RESULTS/check_logs/Annotationi/experiment-name.json .

	Manual termination of a session: if an immediate break is required,
please inquire the process-id (pid), e.g. by ps -ef , and execute the
command ‘kill -TERM pid’. This will close the current session neatly
leaving no remnants and being ready for resumption.

Results

Running qa-dkrz --example[=path], where omission of path would do
this in the current directory, generates QA results.

	check_logs

	All results are gathered in this directory.

Besides the log-files gathering the check results for all files, summarised results
are given in two modes:

	JSON formatted files and information about atomic time ranges of variables
(new and used by default since 2017).

	Formaly, a less machine readable format, which is still used when new results
are written to a directory where files of this format are already located.
Also, when option TRADITIONAL_SUMMARY is applied.

	Log-files (files: experiment-name.log, YAML format)

	There is an entry for each checked file; possibly with annotations.
The option setting of the QA-DKRZ run is put in front.

	Annotations (files: experiment-name.json)

	(for experiment-name see Configuration):
Experiment-wide information about check conclusion, DRS structure and
annotations if any.

	Period (files: experiment-name.period in YAML format, time_range.txt)

	The time range for each variable. Shorter ranges are marked.

	Summary (under construction)

	Directories: experiment-name, contained files are human readable)

	experiment-name

	annotations.txt

	inform about missing variables, if a project defines a set of required
ones.

	file names with a time-range stamp that violates project rules, e.g.
overlapping with other files, syntax failure, etc. .

	In fact copies of the tag-files describe below.

	tag-files

	a file for each annotation flag found in the corresponding log-file.
Annotations include path, file name and variable or experiment scope,
respectively, caption, impact level,
and the tag from one of the check-list tables.

	cs_table (only when option CHECKSUM is enabled)

	Check sums of files; for the verification that no old file is sold as new.

	data

	internal usage

	session_logs

	internal usage

	tables

	The tables actually used for the run and if option PT_PATH_INDEX is set,
then also for the consistency table generated during a check.

CF Conventions Checker

The CF Conformance checker applies to conventions 1.4 -1.7draft (cfconventions.org).

Note

The cf-checkers takes a few seconds for the installation when it runs for the first time.

See Installation on how to install this tool. See the available options:

dkrz-cf-checker [opts] files(s)

Purpose: Check for CF Conventions Compliance (http://cfconventions.org).
The checker is part of the QA-DKRZ package (https://github.com/IS-ENES-DATA)
Compilation: '/your-path-to-QA-DKRZ/install CF' unless
the package was downloaded via 'conda create -n qa-dkrz -c conda-forge -c h-dh qa-dkrz'.
 -C str CF Convention string; taken from global attributes by default.
 -F path Find recursively all nc-files from starting point 'path'.
 -p str Path to one or more NetCDF files.
 -R Apply also recommendations given by the CF conventions.
 --debug Show execution commands.
 --help
 --param Only for program development.
 --ts[=arg] Run the files provided in the Test-Suite for CF Conventions
 rules in QA-DKRZ/CF_TestSuite. If particular NetCDF files are
 provided additionally, then only these are used. If a filename
 cannot be resolved unambiguously, then use optional arg F[ail] or P[ass}.

CF Test Suite

A collection of NetCDF files designed to cover all rules of the CF Conventions
derived from the examples of the cf-conventions-1.x.pdf documents. There are
two branches.

	PASS

	Proper meta-data and data sets, which should never output a failure.
Number of files: 81

	FAIL

	Each file contains a (mostly) single break of a rule and should never pass the test.
Number of files: 187

The suite is checked entirely by applying option --ts. When filenames are
additionally passed to the checker, then only these are checked. If such
filenames are without a leading path, the checker tries to find out the location
in the two branches. If it should be available in both, then provide P or F
as argument to --ts.

Please, note that running some files from the suite by a different
checker may raise additional annotations, because the files are in fact only
snippets with a partly missing data segment.

Index

 Q

Q

 	
 	Quality Assurance

 _static/minus.png

_static/file.png

_static/ajax-loader.gif

_static/up-pressed.png

_static/comment-bright.png

_static/up.png

_static/comment-close.png

_static/down.png

nav.xhtml

 Table of Contents

 		QA-DKRZ documentation

 		QA-DKRZ - Quality Assurance Tool for Climate Data

 		Getting Started

 		Documentation

 		Getting Help

 		Mailing list

 		Bug tracker

 		Contributing

 		License

 		Frequently Asked Questions

 		Questions

 		Q: Why does ...?

 		Glossary

 		Change History

 		0.5

 		0.4

 		User Guide

 		Overview

 		What is checked?

 		Available Versions

 		Installation

 		By Conda Package Manager

 		From GitHUB repository

 		Work-flow

 		Configuration

 		Partitioning of Data Sets

 		Best Practice

 		Installation

 		Before a Run

 		Operational Mode

 		Results

 		CF Conventions Checker

 		CF Test Suite

_static/down-pressed.png

_static/comment.png

_static/plus.png

